
On-disk filesystem structuresOn-disk filesystem structures

Jan van WijkJan van Wijk

Filesystem on-disk structures forFilesystem on-disk structures for
FAT, HPFS, NTFS and JFSFAT, HPFS, NTFS and JFS

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

Information in a filesystemInformation in a filesystem

 Generic volume information
 Bootsector, superblocks, special files ...

 File and directory descriptive info
 Directories, FNODEs, INODEs, MFT
 Hierachy of files/directories

 Freespace versus used areas
 Allocation-table, bitmap

 Used areas for each file/directory
 Allocation-table, run-list, bitmap

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

File Allocation TableFile Allocation Table

 The FAT filesystem was derived from older
CPM filesystems for the first (IBM) PC

 Designed for diskettes and small harddisks
 Later expanded with sub-directory support

to allow larger hierarchical filesystems

 Supported natively by the OS/2 kernel
 Enhancements in installable filessystems

like FAT32.IFS and VFAT.IFS

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

FAT(16) Volume layoutFAT(16) Volume layout

Boot-Record

Data area

Root-Directory

2nd FAT area

1st FAT area

 Bootsector, bootcode, labels
and geometry/size info (BPB)

 File Allocation table, 12/16 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 Fixed size, fixed position

 First data located at cluster 2
 Has clusters of filedata as well

as clusters with sub-directories

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

The Allocation TableThe Allocation Table

 The actual File Allocation Table has ONE value
for every allocation unit (cluster):

 Free, the cluster is NOT in use, value is 0 (zero)
 2 .. max, location of the NEXT cluster in the chain
 EOF, end of file, this is the last cluster in the chain
 BAD, the cluster is unusable due to bad sectors

 Each value can be 12 bits, 16 bits or 32 bits
depending on volume and cluster size.

 A directory entry points to the FIRST cluster of
an 'allocation chain'

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

FAT Allocation ChainFAT Allocation Chain

 1cluster.dat 12

 anyfile.doc 23

 2cluster.dat 31

 fragment.c 43

 ?eleted.txt 127

Directory entries Part of the FAT area

EOF

EOF EOF

EOF32

16

44 15

1 2 3 4 5 6

10

20

30

40

50

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

FAT directory entriesFAT directory entries

 A basic FAT directory entry contains:
 8 character BASE filename
 3 character file extension
 1 byte attribute with RO, System, Hidden etc
 4 byte date and time information
 2 bytes (16-bit) cluster-number for FIRST cluster
 4 bytes (32-bit) filesize, maximum value 2 Gb

 OS/2, FAT32 and VFAT may add:
 2 bytes index value to OS2 extended-attributes
 2 bytes extra cluster number, making it 32-bit
 Extra create/access date and time fields (VFAT)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

Common problems with FATCommon problems with FAT

 Combined file-allocation and freespace
administration (no redundancy) may cause:

 Lost clusters, allocated but no directory link
 Cross-links, clusters that are in more than 1 chain
 Undelete will be UNRELIABLE for fragmented files

because the cluster allocation is unknown after the
file is erased. (clusters marked FREE)

 OS/2 specific EA related problems:
 stored in one huge file “EA DATA . SF”
 Linked from an index in the FAT directory entry, can

be damaged by other OS's or defragmenters

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

FAT32 Volume layoutFAT32 Volume layout

Spare-Boot (6-7)

Data area

2nd FAT area

1st FAT area

 Bootsector, bootcode, label, geo
and size info (BPB). Location of
Root directory, freespace size

 File Allocation table, 32 bits
for every cluster in the volume

 Exact duplicate of 1st FAT

 First data located at cluster 2
(usually the Root directory)

 Has clusters of filedata as well
as clusters with directories

Boot-Record (0-1)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

High Performance File SystemHigh Performance File System

 Designed by MS and IBM to overcome the
shortcommings of the FAT filesystem

 Based on UNIX-like Fnodes and B-trees

 Designed for larger harddisks (> 100 MiB)

 More redundancy, less sensitive to crashes
 B-trees, fragmentation is less of a problem

 Implemented as Installable Filesystem with
dedicated caching (HPFS.IFS, HPFS386.IFS)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Features and limitsHPFS Features and limits

 FS-size upto 2 terabyte (2048 GiB) by design
 OS/2 implementation limit of 64 GiB due to

shared cache design (5 bits of 32 for cache use)

 Allocation in single 512-byte sectors

 Filename maximum length of 254 characters
 Support for multiple codepages for filenames

 B-trees used for allocation and directories

 Multi-level cache: Paths, Directories and Data

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Volume layoutHPFS Volume layout

Boot-Record

Data area

Superblock (10)
Spareblock (11)

Volume Admin

Bitmap tables (14)

 Bootsector with HPFS bootcode
 Fixed volume-information

pointer to Root-directory
 Variable volume-information

 Division in 8 MiB data bands
 Codepage, Hotfix, Spare etc

 Pre-allocated DIR-blocks, 1%
in middle of volume (max 800 Mb)

 Separate Directory-BITMAP

 Filedata + extra allocation and
directory blocks when needed

Directory band

Bitmap

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS data-bands layoutHPFS data-bands layout

 Data Bands:

 Are of a FIXED size of 8 MiB
(128 per gigabyte partition size)

 Each have a freespace BITMAP
that are located at the start or at
the end (alternating) so they are
back-to-back

 Maximum UNFRAGEMENTED
filesize is almost 16 MiB

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

Data band (8 MiB)

Bitmap (2 KiB)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS File allocationHPFS File allocation

Superblock

 Root-LSN FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Data-extent-1

Data-extent-2

Allocation example for a
file in the root directory
with 2 data fragments

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Fnode layoutHPFS Fnode layout

 An Fnode is 512 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 f7'
 Sectornumber (LSN) for Parent directory
 First 15 characters of the filename (short name)
 Length of filename, and length of the filedata
 Type of the Fnode, either File or Directory
 Allocation information, max of 8 LSN+size pairs
 DASD limits (user quota, HPFS386 only)

 Then, variable sized info may be present,
either in the Fnode itself or externally:

 Extended-attribute data (.longname, .icon etc)
 Access Control Lists (HPFS386 only)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS DirBlock layoutHPFS DirBlock layout

 A DirBlock is 2048 bytes with fixed size info:
 Unique binary signature string 'ae 0a e4 77'
 LSN for Parent and type Fnode or DirBlock (B-tree)
 Sectornumber for THIS Directory-Block
 Number of changes since creation of the block

 Then, variable sized Directory info with:
 A B-tree 'down' pointer (DirBlock LSN), OR
 Three date/time fields creation, modify, last access
 The standard (FAT, SHRA) attributes
 File data length and extended-attribute length
 Codepage number to use with the filename
 Variable sized filename, max 254 characters

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Fragmented FileHPFS Fragmented File

FNODE
 (dir)
Alloc-LSN

FNODE
 (file)
Alloc-LSN

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN

Extent 1

Allocation for a file in a sub-directory
with more than 8 data fragments
(Alloc sect holds 128 LSN+size pairs)

Dir-Block

Fnode-LSN
Fnode-LSN
Fnode-LSN ALLOC

 SECT

Alloc-LSN
Alloc-LSN
 .
 .
 .
Alloc-LSN
Alloc-LSN

Extent 2

Extent n-1

Extent n

 *
 *
*

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Superblock infoHPFS Superblock info

Data-bitmap
Data-bitmap

Data-bitmapBitmap Table

Badblock list
Directory block
Directory block
Directory block
Directory block
Directory block
Directory block
Directory blockDirectory

 bitmap

Information in the superblock will only
change with a FORMAT or a CHKDSK
being run on the filesystem

Superblock

Root-LSN
Bitmap table
Badblock list
Direct band
Direct bitmap

HPFS version
Last CHKDSK
Last Optimize
HPFS V-name

UserId table
(HPFS386)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

HPFS Spareblock infoHPFS Spareblock info

Spareblock

Hotfix list
Codepage info

Spare dirblock
Spare dirblock

Super+Spare
Checksums

DIRTY status

Directory block
Directory block

Directory block

CP-info

CP-data
CP-data

Hotfix list

Information in the spareblock may change
at any time the filesystem is mounted
(as indicated by a 'DIRTY' status)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

New Technology File SystemNew Technology File System

 Design started as new FS for OS/3 (32-bit OS/2)
before that was renamed to Windows NT

 Organisation like a database, everything, including the
FS administration itself is a FILE represented by an
entry in the Master File table (MFT)

 Can handle extreme sizes due to 64 bit values used

 All data represented by attribute values, with the data
being the 'default data attribute'. Supports
multiple data-streams for a single file.

 Has native support for OS/2 EA's (as MFT attribute)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

NTFS limitsNTFS limits

 FS-size upto 2^64 clusters by design
 Some tools limited to 2048 GiB due to use of

32 bits for sector or cluster numbers

 Allocation in clusters of typically 8 sectors
 MFT record typical size is 2 KiB

 May hold all data for small files. Larger attributes are
stored externally, using runlists for the allocated space

 Filename of unlimited length, limited by the OS
itself to a length of 254 characters

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

NTFS FeaturesNTFS Features

 Uses UNICODE for filenames to allow for
any character set (like codepages in HPFS)

 The FS keeps a transaction-LOG of all changes
to the FS-structures to allow quick recovery and
guarantee a consistent filesystem.

 This makes it a journalling filesystem
 File data itself is NOT part of the journal,

so may get lost/damaged after a crash!

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

NTFS Volume layoutNTFS Volume layout

Spare-Boot-Rec

MFT zone

MFT-file fragment

 Bootsector with NTFS bootcode
 Some fixed volume-information,

pointer to MFT and MFT-spare

 MFT zone is reserved to reduce
fragmentation of the MFT, but will
be used for data if FS gets full

 MFT itself is a regular file, so CAN
and WILL get fragmented

 Rest of space is for all external
attributes, not stored in the MFT
records themselves ...

MFT-file fragment

Boot-Record

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

NTFS special filesNTFS special files

 0 = $MFT Main MFT file, all files/dirs
 1 = $MFTmirr Mirror MFT file, 1st 4 entries
 2 = $LogFile Journalling logfile
 3 = $Volume Global volume information
 4 = $AttrDef Definitions for attribute values
 5 = \ Root directory
 6 = $Bitmap Allocation bitmap
 7 = $Boot Bootrecord (8 KiB at sect 0)
 8 = $BadClus Bad cluster administration
 9 = $Secure Global Security information
 A = $Upcase Collating and uppercase info
 B = $Extend Extended info (NTFS 5, XP)

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

MFT special file remarksMFT special file remarks

 Special files upto MFT-A are fixed, and standard

 MFT B represents a directory with (for XP):

 $ObjId Object identification data
 $Quota User space restriction data
 $Reparse Reparse points, aliases in the

filesystem, much like Unix/Linux
soft-links (or WPS shadows)

 MFT numbers upto arround 1A are reserved for
system file use by the FS itself, after that
the first user files will appear

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

MFT record layoutMFT record layout

 The MFT record is of a fixed size (1 KiB)
that starts with a fixed header containing:

 Unique signature string 'FILE'
 Sequence, generation and 'fixup' information
 Offset to first dynamic attribute in the record (0x38)
 Type of the MFT-record, either File or Directory

 After this a dynamic list of variable sized
attributes follows, these can be either:

 Internal (Self contained) when small
 External, using an allocation run-list pointing to one

or more clusters being used for the data

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

MFT attributes MFT attributes (from $AttrDef)(from $AttrDef)

 10 = $STANDARD_INFORMATION
 20 = $ATTRIBUTE_LIST (group of attributes)
 30 = $FILE_NAME
 40 = $OBJECT_ID
 50 = $SECURITY_DESCRIPTOR
 60 = $VOLUME_NAME
 70 = $VOLUME_INFORMATION
 80 = $DATA (default or named data stream)
 90 = $INDEX_ROOT (B-tree root, directories)
 A0 = $INDEX_LOCATION
 B0 = $BITMAP
 C0 = $REPARSE_POINT
 D0 = EA_INFORMATION
 E0 = EA (actual OS/2 extended attribute data)
 100 = LOGGED_UTILITY_STREAM

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

Journalled File SystemJournalled File System

 Designed by IBM for its AIX operating system

 Based on UNIX-like structure with journalling
and multiple storage area capabilities

 Ported to an OS/2 IFS by IBM to allow huge
expandable filesystems with good performance
and journalling (fast crash recovery)

 Port released as 'open source' for Linux too

 Relies on LVM for some of its functionality

 On-disk FS structures, FAT, HPFS, NTFS, JFS © 2004 JvW

JFS Volume layoutJFS Volume layout

FSCK work area

 Bootsector, standard (label etc)

 JFS specific volume data with
pointers to lots of info :-)

 Duplicate of main superblock

 Actual contents is grouped in
'aggregates' of fixed size
Layout of that to be refined

 The 'journal' file area

 Temporary space for CHKDSK

Dir and File data

Inode bitmap

Boot-Record (0)

Superblock (40)

Superblock (78)

Inline log area

Inode table

