
Open TxWindowsOpen TxWindows
Programming and User GuideProgramming and User Guide

Jan van WijkJan van Wijk

Brief programming and user guide forBrief programming and user guide for
the open-source TxWindows librarythe open-source TxWindows library

 TxWindows, Programming and User Guide © 2005 JvW

Presentation contentsPresentation contents

 Interfacing, include files, LIBs
 The message event model
 Structure of a typical application
 Setup and creation of windows

 Window classes
 Window procedures and messages
 Window handling functions
 Standard dialogs
 Commandline and Scrollbuffer usage
 The menu system
 Using functional TRACE
 Miscellaneous functions

 TxWindows, Programming and User Guide © 2005 JvW

Interfacing to TxWindows (TxWin)Interfacing to TxWindows (TxWin)

 To use TxWin from a 'C' application all you
need to do is include the 'txlib.h' header file.
In turn this will include other TxWin stuff
as well as some common 'C'-library and
operating system specific headers.

 Compile and link with the TxWin library
(.LIB file) that matches the platform and
variant you want (retail, trace, debug).

 This is part of the standard master makefile (.MIF)

 TxWin comes as STATIC libraries (.LIB)
there are no dynamically loaded ones (.DLL)

 TxWindows, Programming and User Guide © 2005 JvW

The message event modelThe message event model

 TxWin uses almost the same model as PM/WIN:

 Windows are created and inserted in a Windows
hierarchy, each window has a unique HANDLE

 Communication with (and between) windows is mainly
done using messages (events) that are addressed to its
handle, relating to the windows procedure that should
process the message

 This message based system allows for a very
modular distribution of functionality and easy changes
to appearance or behaviour without having access to
the base window class code (sub-classing).

 TxWindows, Programming and User Guide © 2005 JvW

Message handlingMessage handling

 Messages can be 'sent' directly to a window for
synchronious execution of the related code
(much like a function-call) or 'posted' to a
QUEUE with normal processing continueing.

 After finishing current processing, the OLDEST
message will be picked up from the queue, and
sent to the window it was addressed to.
This 'dispatching' is done by the message loop
either in the main-program or inside a dialog.

 When the queue is empty, it waits for new
events, usually keyboard or mouse ...

 TxWindows, Programming and User Guide © 2005 JvW

What is a (TxWin) window ?What is a (TxWin) window ?

 An object that defines a text-area with a number
of lines and colums, with associated behaviour

 On the screen: a rectangular area showing the
windowframe plus contents. The window can be
invisible or partly covered by other windows.

 In the program: a data structure that holds
all information about the window

 For many window classes, there is also a link to the
contents of the window, usually as a pointer to a
datastructure and some descriptive fields.

 TxWindows, Programming and User Guide © 2005 JvW

TxWin versus PM/WIN windowsTxWin versus PM/WIN windows

 When you are familiar with PM/WIN windowing
it is good to realize a few major differences:

 TxWin is purely TEXT based, no graphics possible
Limits appearance freedom, and amount of information
that can be displayed and handled in one window

 A Window in TxWin includes borders, a title and footer,
special areas like close-buttons and a client-area.
In PM/WIN all of these are SEPARATE windows!

 Access to (contents) data is usually direct, through vari-
ables instead of through a purely message based inter-
face as many PM/Windows classes use.

 TxWindows, Programming and User Guide © 2005 JvW

Application structureApplication structure

 In addition to standard 'C' stuff like main:

 Initialize the library, including argument handling
 Interpret commandline switches, if any
 Create and initialize the main desktop window
 Create one or more application windows
 Start the action: Show a window or post a MSG
 Enter the main message-loop (event dispatch)

 Handle messages (events) in window-procedure

 On exit, terminate library and cleanup

 TxWindows, Programming and User Guide © 2005 JvW

Creating WindowsCreating Windows

 All windows and dialogs in TxWin are
created dynamically, there are no static
resources like OS/2 PM or Windows has.

 Macros and widgets can streamline this ...

 Typical window creation consists of:

 Initialize window-setup structure, directly or using
txwSetupWindowData(...)

 Create the window using txwCreateWindow(...)

 Add or attach the window contents, depending on the
class of the window (text, lists, etc ..)

 TxWindows, Programming and User Guide © 2005 JvW

Window classesWindow classes

 Window classes define TYPES of windows

 The specific appearance and behaviour of a
class is implemented in the library, mainly in
the form of the default window procedure that
handles all standard messages for the class
like painting and user input

 Applications can add to or change this by using
a specific window procedure (sub-classing)

 TxWindows, Programming and User Guide © 2005 JvW

Window proceduresWindow procedures

 A window procedure is a function being called
for every message sent to a specific window.

 The structure is simple, select (switch) on the
message-id, and perform required actions.

 The window procedure handles any messages
it is interested in, and passes all others to the
default one: txwDefWindowProc()

 Specific windows procedures can be assigned
to any window on creation to allow changing
the appearance or behaviour

 TxWindows, Programming and User Guide © 2005 JvW

Sub-classing windowsSub-classing windows

 Changes appearance and/or behaviour

 Unlike PM/WIN, subclassing in TxW works on a
per-window basis, and NOT a whole class.

 Implemented by allowing a window-procedure to
be defined on the txwCreateWindow() and a few
other related functions like txwDlgBox()

 There is no need to register new classes,
you use the existing ones and add window
procedures where needed

 TxWindows, Programming and User Guide © 2005 JvW

TXW_FRAME classTXW_FRAME class

 This is the simplest of classes:

 Has an optional BORDER with title and/or footer

 Does NO painting of the client area (transparent)

 Can save underlying contents, and restore on destroy

 No data is associated to this window

 It is rarely used 'as is' but serves as the main
'desktop' window and as main window for a
dialog completely covered by its 'controls'.

 TxWindows, Programming and User Guide © 2005 JvW

TXW_CANVAS classTXW_CANVAS class

 This is a frame, with a default 'client area':

 Client area can be filled with a solid color

 Optional 'ASCII artwork' can be defined to
appear in the client area (see TXT test program)

 Often used as main window for a dialog.
The client area then forms the 'empty' areas
between the dialog control windows like
buttons, entryfields and lists.

 TxWindows, Programming and User Guide © 2005 JvW

TXW_STATIC classTXW_STATIC class

 This is a simple, multi-line text area to hold
static text for display (NOT editable!)

 The data is a standard TXW array of
string-pointers allowing use of either
statically defined as well as dynamically
created texts. (char *text[])

 Useful to add descriptive texts to dialogs

 TxWindows, Programming and User Guide © 2005 JvW

TXW_STLINE classTXW_STLINE class

 This is an even simpler, single-line text area
to hold static text for display (NOT editable!)

 The data is a standard 'C' string-pointer
allowing use of either statically defined
or dynamically created texts (char *text)

 Useful to add short descriptive texts to dialogs,
like headerlines for tables or entryfields

 Note that for entryfield headers you can use
the 'title' from the border area as well

 TxWindows, Programming and User Guide © 2005 JvW

TXW_SBVIEW classTXW_SBVIEW class

 This is a multi-line, output only text window
with several special properties:

 New text can be added to the end of the buffer using
the standard TxPrint() function (printf like interface)

 ANSI style colors and some positioning can be used

 The displayed text is kept in a large 'scroll-buffer',
colors are preserved when scrolling back and forth

 Display of the buffer is optimized to allow smooth
scrolling even when other windows are displayed
on top of it (including shadowing :-)

 TxWindows, Programming and User Guide © 2005 JvW

TXW_SBVIEW, continuedTXW_SBVIEW, continued

 Footerline of the window has automatic line counters

 Application can display short status messages to that
footerline as well, like progress indicators

 It is a generic output mechanism for applications
that produce unstructured information, perhaps
ported from simple commandline programs.

 Note:
Similar to showing status messages in the footer of the
scrollbuffer, applications can display short messages in
the desktop title (or top) line as well. This method can
be used by the functional trace facility too ...

 TxWindows, Programming and User Guide © 2005 JvW

TXW_ENTRYFIELD classTXW_ENTRYFIELD class

 This is a single-line text entry field with
some editing capabilities

 The data is a standard 'C' character array.
 (char *text)

 An optional history-buffer can be attached to
automatically store entered values for later
retrieval, either using the arrow-keys or a
popup-list. Useful for a commandline :-)

 TxWindows, Programming and User Guide © 2005 JvW

TXW_TEXTVIEW classTXW_TEXTVIEW class

 This is a simple output only view window for text

 Text may be (much) larger than the window

 Scrolling through the text possible using the
arrow-keys, PgUp/PgDn etc, as well as some
controls for the mouse in the border (if any)

 When supported, the mouse scroll-wheel
can be used to scroll up and down too

 Is used for displaying HELP screens

 TxWindows, Programming and User Guide © 2005 JvW

TXW_BUTTON classTXW_BUTTON class

 This is a button control, in the form of:

 Push button, where a click (or ENTER) on the button
performs some kind of action like [OK], [Cancel] etc

 Radio button, usually several in a group where only
one button in the group has the 'ON' status.
Clicking on a button inverses the state of that button,
and possibly all others in the group

 Check button, either single or in a group, where each
button has its own checked/unchecked status.
Clicking the button inverses the state but does
not affect any other button

 TxWindows, Programming and User Guide © 2005 JvW

TXW_BUTTON, continuedTXW_BUTTON, continued

 The data is a simple BOOLEAN variable
for the Radio and Check buttons, and there
is no associated data for a push button.

 Click events are communicated using messages

 Radio and Check buttons can have the 'AUTO'
property, meaning that all handling for the button
is done entirely by the library. All the application
needs to do is read the boolean variable ...

 Grouped buttons (or any grouped controls) are seen
as a single entity for TAB-key navigation. In this case
the arrow-keys still navigate within the group ...

 TxWindows, Programming and User Guide © 2005 JvW

TXW_LISTBOX classTXW_LISTBOX class

 This is a generic LIST control in the form off:

 Singe selection list, like a (menu) popup

 Multiple selection list, where more than on item
in the list can be marked as being 'selected'

 The data is an array of 'TXSELIST' items that
can either be statically defined (for a menu)
or created on the fly (like for directory lists)

 There can be more items in the list than visible, and
scrolling is supported in as with the regular text view

 Items can be marked as 'disabled' or 'separator'

 TxWindows, Programming and User Guide © 2005 JvW

TXW_LISTBOX, continuedTXW_LISTBOX, continued

 Lists can have several visual appearances:

 As a popup-window, like a menu or floating popup

 Embedded as a control in a dialog, like the
directory and file-lists in standard file dialogs

 As a 'spin' control with a single (current) value visible
and the arrow-keys 'spinning' through all available
values. The ENTER key will present a popup version.
An example is the drive selection list in file dialogs.

 TxWindows, Programming and User Guide © 2005 JvW

Dialog windowsDialog windows

 A dialog consists of a base-window, usually a
CANVAS class, and one or more CONTROLS

 Each control is a window of its own, and
can be any of the presented classes.

 Dialogs are built dynamically by creating the
dialog-frame and all control windows.
It is then presented using txwDlgBox()

 Dialogs are MODAL in nature, meaning that oth-
er parts of the application are NOT operational
while the dialog is up.

 TxWindows, Programming and User Guide © 2005 JvW

Dialog windows, continuedDialog windows, continued

 A specific window procedure can be specified,
or the default txwDefDlgProc() will be used.

 Data is made available to the dialog using
the attached data for each control.

 In addition to that, a data structure could be
attached to the frame-window (window-ptr)
to be used by the dialog window procedure

 The returncode identifies the control (button)
that was active when the dialog was ended

 Of course all attached, and possibly modified,
data for the control windows is still available.

 TxWindows, Programming and User Guide © 2005 JvW

Dialog WidgetsDialog Widgets

 Widgets are normal control windows
collected into a WIDGET-ARRAY
that can be processed in one go

 This is an easy way to define even rather com-
plex dialogs, without having to create each win-
dow seperately

 Most TxWin standard dialogs will accept
a widget array as (additional) parameter,
and add the widgets to that dialog ...

 TxWindows, Programming and User Guide © 2005 JvW

Standard dialogsStandard dialogs

 TxWin includes a few standard dialogs:

 Message-box, with one to four buttons (W*)
 Prompt-box, to get simple single field input (W*)
 File-Open and File-save-as dialogs (W*)
 Directory picker dialog (W*)
 Menubar dialog, with pulldown and sub menus
 List-box, as submenu or standalone popup
 Widget dialog, easy creation of custom dialogs (W*)

 The (W*) marked dialogs can be extended very
easily using a list of Widget definitions

 Any CONTROL class can be used in a widget list

 TxWindows, Programming and User Guide © 2005 JvW

More infoMore info

 This document is NOT a reference, and actually
there IS no reference at the moment :-) So:

 Get the TxWindows library, download available from:

 http://www.dfsee.com/txwin/txwin1xx.zip

 Check out the samples and TXT test application
 Really READ the available HELP screens :-)
 Study the interfaces as defined in the header files
 Study behaviour by looking through the sources

 If all that fails, contact me at:

 txwin@dfsee.com

Open TxWindowsOpen TxWindows
Programming and User GuideProgramming and User Guide

Questions ?Questions ?

